Pod sera en maintenance le 19/10/2021 de 10h à 14h. Évitez tout transfert de contenu à cette date.
Toutes les vidéos déjà en ligne restent consultables pendant cette période.

TimeMan Seminar - Izabela SZLUFARSKA [June 24, 2021]

 Summary

Dislocations are the primary drivers of plasticity in polycrystalline materials and they can drive microstructural evolution during mechanical deformation. When dislocation nucleation and propagation are suppressed, a material either becomes brittle or other mechanisms need to be activated to accommodate plastic strain and deformation. In this talk, I will first discuss our discovery of amorphous shear bands in crystalline intermetallics. These shear bands accommodate plastic strain in the absence of dislocations, they do not require pre-existing damage, and they can be nucleated in pristine crystalline grains. Such shear bands can be utilized to increase toughness of nominally brittle materials. I will also present our study on the role of dislocations in stress-induced microstructural evolution of nanocrystalline metals. I will discuss how dislocation suppression by dopants or by pre-existing twins can be beneficial to microstructural evolution of nanocrystalline metals and to their wear resistance.

Tags: amorphous shear lamellae dynamic recrystallization friction plasticity wear

 Infos

 Downloads

 Embed/Share

Social Networks

 Options
Check the box to autoplay the video.
Check the box to loop the video.
Check the box to indicate the beginning of playing desired.
 Embed in a web page
 Share the link
qrcode
Comments have been disabled for this video.