Lecteur vidéo en cours de chargement.
Temps actuel 0:00
Durée 0:00
Chargé: 0%
Type de flux EN DIRECT
Temps restant 0:00
 
1x
  • Chapitres
  • descriptions désactivées, sélectionné
  • Sous-titres désactivés, sélectionné
    • Quality

    TimeMan Seminar - Alexander GORFER

    24 octobre 2024
    Durée : 00:30:05
    Nombre de vues 9
    Nombre d’ajouts dans une liste de lecture 0
    Nombre de favoris 0

    Diffusion and thermodynamics of defects in alkali feldspar
    simulated through machine learning force fields

    Alexander Gorfer
    Faculty of Physics, University of Vienna, Austria &
    Department of Lithospheric Research, University of Vienna, Austria


    Exsolution microstructures of alkali feldspar (Na,K)AlSi3O8 which form during slow cooling
    of high-temperature rocks encode the rocks thermal history, but we do not yet fully know
    how to interpret them quantitatively. In this talk I will present computer simulations driven
    by machine learning force fields that shed light on the microscopic mechanism of diffusion
    that ultimately controls the evolution of the exsolution microstructures.
    In Na-feldspar we find a new kind of Na+-Na+ dumbbell interstitial point defect and predict
    that this is the most stable interstitial defect over all temperatures. Our simulations of the
    dynamics of this defect combined with the calculated defect concentration quantitatively
    agree with experimental sodium self-diffusion data, which allows us to rectify past investigations
    on the mechanism and reconcile prior works on the anisotropy of cation diffusion.
    I will also give a short overview of our recent work in which we use a combination of molecular
    dynamics and Monte Carlo simulations to calculate the mixing thermodynamics of Nafeldspar
    and K-feldspar above the alkali feldspar solvus. Our model correctly aligns with the
    literature data in that increasing Al-Si disorder corresponds to a more ideal mixture and we
    predict that the degree of Al-Si disorder is less relevant as long as disorder persists.

    Mots clés : alkali feldspar defects diffusion machine learning force fields

     Informations

    • Ajouté par : Patrick Cordier (patrick.cordier)
    • Intervenant(s) :
    • Mis à jour le : 25 octobre 2024 13:26
    • Type : Webinaire
    • Langue principale : Anglais
    Les commentaires ont été désactivés pour cette vidéo.